Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank-$1$ matrix differential equations for structured eigenvalue optimization (2206.09338v1)

Published 19 Jun 2022 in math.NA, cs.NA, math.DS, and math.OC

Abstract: A new approach to solving eigenvalue optimization problems for large structured matrices is proposed and studied. The class of optimization problems considered is related to computing structured pseudospectra and their extremal points, and to structured matrix nearness problems such as computing the structured distance to instability or to singularity. The structure can be a general linear structure and includes, for example, large matrices with a given sparsity pattern, matrices with given range and co-range, and Hamiltonian matrices. Remarkably, the eigenvalue optimization can be performed on the manifold of complex (or real) rank-1 matrices, which yields a significant reduction of storage and in some cases of the computational cost. The method relies on a constrained gradient system and the projection of the gradient onto the tangent space of the manifold of complex rank-$1$ matrices. It is shown that near a local minimizer this projection is very close to the identity map, and so the computationally favorable rank-1 projected system behaves locally like the %computationally expensive gradient system.

Citations (5)

Summary

We haven't generated a summary for this paper yet.