Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank-Metric Lattices (2206.09284v1)

Published 18 Jun 2022 in math.CO, cs.IT, and math.IT

Abstract: We introduce the class of rank-metric geometric lattices and initiate the study of their structural properties. Rank-metric lattices can be seen as the $q$-analogues of higher-weight Dowling lattices, defined by Dowling himself in 1971. We fully characterize the supersolvable rank-metric lattices and compute their characteristic polynomials. We then concentrate on the smallest rank-metric lattice whose characteristic polynomial we cannot compute, and provide a formula for it under a polynomiality assumption on its Whitney numbers of the first kind. The proof relies on computational results and on the theory of vector rank-metric codes, which we review in this paper from the perspective of rank-metric lattices. More precisely, we introduce the notion of lattice-rank weights of a rank-metric code and investigate their properties as combinatorial invariants and as code distinguishers for inequivalent codes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.