Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Role of Generalization in Transferability of Adversarial Examples (2206.09238v1)

Published 18 Jun 2022 in cs.LG and stat.ML

Abstract: Black-box adversarial attacks designing adversarial examples for unseen neural networks (NNs) have received great attention over the past years. While several successful black-box attack schemes have been proposed in the literature, the underlying factors driving the transferability of black-box adversarial examples still lack a thorough understanding. In this paper, we aim to demonstrate the role of the generalization properties of the substitute classifier used for generating adversarial examples in the transferability of the attack scheme to unobserved NN classifiers. To do this, we apply the max-min adversarial example game framework and show the importance of the generalization properties of the substitute NN in the success of the black-box attack scheme in application to different NN classifiers. We prove theoretical generalization bounds on the difference between the attack transferability rates on training and test samples. Our bounds suggest that a substitute NN with better generalization behavior could result in more transferable adversarial examples. In addition, we show that standard operator norm-based regularization methods could improve the transferability of the designed adversarial examples. We support our theoretical results by performing several numerical experiments showing the role of the substitute network's generalization in generating transferable adversarial examples. Our empirical results indicate the power of Lipschitz regularization methods in improving the transferability of adversarial examples.

Citations (9)

Summary

We haven't generated a summary for this paper yet.