Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Classification of Brain Tumor Images Using Transfer Learning Based Deep Neural Network (2206.08543v1)

Published 17 Jun 2022 in eess.IV and cs.CV

Abstract: In recent advancement towards computer based diagnostics system, the classification of brain tumor images is a challenging task. This paper mainly focuses on elevating the classification accuracy of brain tumor images with transfer learning based deep neural network. The classification approach is started with the image augmentation operation including rotation, zoom, hori-zontal flip, width shift, height shift, and shear to increase the diversity in image datasets. Then the general features of the input brain tumor images are extracted based on a pre-trained transfer learning method comprised of Inception-v3. Fi-nally, the deep neural network with 4 customized layers is employed for classi-fying the brain tumors in most frequent brain tumor types as meningioma, glioma, and pituitary. The proposed model acquires an effective performance with an overall accuracy of 96.25% which is much improved than some existing multi-classification methods. Whereas, the fine-tuning of hyper-parameters and inclusion of customized DNN with the Inception-v3 model results in an im-provement of the classification accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.