Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Abstraction-Based Control Synthesis (2206.08069v1)

Published 16 Jun 2022 in eess.SY and cs.SY

Abstract: This paper studies formal synthesis of controllers for continuous-space systems with unknown dynamics to satisfy requirements expressed as linear temporal logic formulas. Formal abstraction-based synthesis schemes rely on a precise mathematical model of the system to build a finite abstract model, which is then used to design a controller. The abstraction-based schemes are not applicable when the dynamics of the system are unknown. We propose a data-driven approach that computes the growth bound of the system using a finite number of trajectories. The growth bound together with the sampled trajectories are then used to construct the abstraction and synthesise a controller. Our approach casts the computation of the growth bound as a robust convex optimisation program (RCP). Since the unknown dynamics appear in the optimisation, we formulate a scenario convex program (SCP) corresponding to the RCP using a finite number of sampled trajectories. We establish a sample complexity result that gives a lower bound for the number of sampled trajectories to guarantee the correctness of the growth bound computed from the SCP with a given confidence. We also provide a sample complexity result for the satisfaction of the specification on the system in closed loop with the designed controller for a given confidence. Our results are founded on estimating a bound on the Lipschitz constant of the system and provide guarantees on satisfaction of both finite and infinite-horizon specifications. We show that our data-driven approach can be readily used as a model-free abstraction refinement scheme by modifying the formulation of the growth bound and providing similar sample complexity results. The performance of our approach is shown on three case studies.

Citations (26)

Summary

We haven't generated a summary for this paper yet.