Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbiased Estimation using Underdamped Langevin Dynamics (2206.07202v2)

Published 14 Jun 2022 in stat.CO, math.ST, stat.ME, stat.ML, and stat.TH

Abstract: In this work we consider the unbiased estimation of expectations w.r.t.~probability measures that have non-negative Lebesgue density, and which are known point-wise up-to a normalizing constant. We focus upon developing an unbiased method via the underdamped Langevin dynamics, which has proven to be popular of late due to applications in statistics and machine learning. Specifically in continuous-time, the dynamics can be constructed {so that as the time goes to infinity they} admit the probability of interest as a stationary measure. {In many cases, time-discretized versions of the underdamped Langevin dynamics are used in practice which are run only with a fixed number of iterations.} We develop a novel scheme based upon doubly randomized estimation as in \cite{ub_grad,disc_model}, which requires access only to time-discretized versions of the dynamics. {The proposed scheme aims to remove the dicretization bias and the bias resulting from running the dynamics for a finite number of iterations}. We prove, under standard assumptions, that our estimator is of finite variance and either has finite expected cost, or has finite cost with a high probability. To illustrate our theoretical findings we provide numerical experiments which verify our theory, which include challenging examples from Bayesian statistics and statistical physics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.