Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Density Regression with Conditional Support Points (2206.06833v1)

Published 14 Jun 2022 in stat.ME and stat.CO

Abstract: Density regression characterizes the conditional density of the response variable given the covariates, and provides much more information than the commonly used conditional mean or quantile regression. However, it is often computationally prohibitive in applications with massive data sets, especially when there are multiple covariates. In this paper, we develop a new data reduction approach for the density regression problem using conditional support points. After obtaining the representative data, we exploit the penalized likelihood method as the downstream estimation strategy. Based on the connections among the continuous ranked probability score, the energy distance, the $L_2$ discrepancy and the symmetrized Kullback-Leibler distance, we investigate the distributional convergence of the representative points and establish the rate of convergence of the density regression estimator. The usefulness of the methodology is illustrated by modeling the conditional distribution of power output given multivariate environmental factors using a large scale wind turbine data set. Supplementary materials for this article are available online.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)