Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local well-posedness for the inhomogeneous biharmonic nonlinear Schrödinger equation in Sobolev spaces (2206.06690v1)

Published 14 Jun 2022 in math.AP

Abstract: In this paper, we study the Cauchy problem for the inhomogeneous biharmonic nonlinear Schr\"{o}dinger (IBNLS) equation [iu_{t} +\Delta{2} u=\lambda |x|{-b}|u|{\sigma}u,~u(0)=u_{0} \in H{s} (\mathbb R{d}),] where $d\in \mathbb N$, $s\ge 0$, $0<b\<4$, $\sigma\>0$ and $\lambda \in \mathbb R$. Under some regularity assumption for the nonlinear term, we prove that the IBNLS equation is locally well-posed in $H{s}(\mathbb R{d})$ if $d\in \mathbb N$, $0\le s <\min {2+\frac{d}{2},\frac{3}{2}d}$, $0<b<\min{4,d,\frac{3}{2}d-s,\frac{d}{2}+2-s}$ and $0<\sigma< \sigma_{c}(s)$. Here $\sigma_{c}(s)=\frac{8-2b}{d-2s}$ if $s<\frac{d}{2}$, and $\sigma_{c}(s)=\infty$ if $s\ge \frac{d}{2}$. Our local well-posedness result improves the ones of Guzm\'{a}n-Pastor [Nonlinear Anal. Real World Appl. 56 (2020) 103174] and Liu-Zhang [J. Differential Equations 296 (2021) 335-368] by extending the validity of $s$ and $b$.

Summary

We haven't generated a summary for this paper yet.