Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GraphMLP: A Graph MLP-Like Architecture for 3D Human Pose Estimation (2206.06420v5)

Published 13 Jun 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Modern multi-layer perceptron (MLP) models have shown competitive results in learning visual representations without self-attention. However, existing MLP models are not good at capturing local details and lack prior knowledge of human body configurations, which limits their modeling power for skeletal representation learning. To address these issues, we propose a simple yet effective graph-reinforced MLP-Like architecture, named GraphMLP, that combines MLPs and graph convolutional networks (GCNs) in a global-local-graphical unified architecture for 3D human pose estimation. GraphMLP incorporates the graph structure of human bodies into an MLP model to meet the domain-specific demand of the 3D human pose, while allowing for both local and global spatial interactions. Furthermore, we propose to flexibly and efficiently extend the GraphMLP to the video domain and show that complex temporal dynamics can be effectively modeled in a simple way with negligible computational cost gains in the sequence length. To the best of our knowledge, this is the first MLP-Like architecture for 3D human pose estimation in a single frame and a video sequence. Extensive experiments show that the proposed GraphMLP achieves state-of-the-art performance on two datasets, i.e., Human3.6M and MPI-INF-3DHP. Code and models are available at https://github.com/Vegetebird/GraphMLP.

Citations (22)

Summary

We haven't generated a summary for this paper yet.