Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Dynamic Stability Assessment of Power Grid Topologies using Graph Neural Networks (2206.06369v4)

Published 10 Jun 2022 in cs.LG, cs.AI, and physics.data-an

Abstract: To mitigate climate change, the share of renewable energies in power production needs to be increased. Renewables introduce new challenges to power grids regarding the dynamic stability due to decentralization, reduced inertia, and volatility in production. Since dynamic stability simulations are intractable and exceedingly expensive for large grids, graph neural networks (GNNs) are a promising method to reduce the computational effort of analyzing the dynamic stability of power grids. As a testbed for GNN models, we generate new, large datasets of dynamic stability of synthetic power grids, and provide them as an open-source resource to the research community. We find that GNNs are surprisingly effective at predicting the highly non-linear targets from topological information only. For the first time, performance that is suitable for practical use cases is achieved. Furthermore, we demonstrate the ability of these models to accurately identify particular vulnerable nodes in power grids, so-called troublemakers. Last, we find that GNNs trained on small grids generate accurate predictions on a large synthetic model of the Texan power grid, which illustrates the potential for real-world applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. F. Milano, F. Dörfler, G. Hug, D. J. Hill,  and G. Verbič, “Foundations and Challenges of Low-Inertia Systems (Invited Paper),” in 2018 Power Systems Computation Conference (PSCC) (2018) pp. 1–25.
  2. C. Field, V. Barros, T. Stocker, D. Qin, D. Dokken, K. Ebi, M. Mastrandrea, K. Mach, G.-K. Plattner, S. Allen, M. Tignor,  and P. Midgley, “Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Chan,”  (2012).
  3. H.-O. Pörtner, D. Roberts, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langdorf, S. Löschke, V. Möller, A. Okem,  and B. Rama, “IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,”  (2022).
  4. D. Witthaut and M. Timme, “Braess’s paradox in oscillator networks, desynchronization and power outage,” New Journal of Physics  (2012), 10.1088/1367-2630/14/8/083036.
  5. B. Schäfer, T. Pesch, D. Manik, J. Gollenstede, G. Lin, H.-P. Beck, D. Witthaut,  and M. Timme, “Understanding Braess’ Paradox in power grids,” Nature Communications 13, 5396 (2022).
  6. S. Liemann, L. Strenge, P. Schultz, H. Hinners, J. Porst, M. Sarstedt,  and F. Hellmann, “Probabilistic Stability Assessment for Active Distribution Grids,” in 2021 IEEE Madrid PowerTech (2021) pp. 1–6.
  7. C. D. Brummitt, P. D. H. Hines, I. Dobson, C. Moore,  and R. M. D’Souza, “Transdisciplinary electric power grid science,” Proceedings of the National Academy of Sciences 110, 12159–12159 (2013).
  8. M. Rohden, A. Sorge, M. Timme,  and D. Witthaut, “Self-Organized Synchronization in Decentralized Power Grids,” Physical Review Letters 109, 064101 (2012).
  9. A. E. Motter, S. A. Myers, M. Anghel,  and T. Nishikawa, “Spontaneous synchrony in power-grid networks,” Nature Physics 9, 191–197 (2013).
  10. F. Dörfler, M. Chertkov,  and F. Bullo, “Synchronization in complex oscillator networks and smart grids,” Proceedings of the National Academy of Sciences of the United States of America  (2013), 10.1073/pnas.1212134110.
  11. D. Witthaut, F. Hellmann, J. Kurths, S. Kettemann, H. Meyer-Ortmanns,  and M. Timme, “Collective nonlinear dynamics and self-organization in decentralized power grids,” Reviews of Modern Physics 94, 015005 (2022).
  12. P. J. Menck, J. Heitzig, N. Marwan,  and J. Kurths, “How basin stability complements the linear-stability paradigm,” Nature Physics 9, 89–92 (2013).
  13. P. J. Menck, J. Heitzig, J. Kurths,  and H. Joachim Schellnhuber, “How dead ends undermine power grid stability,” Nature Communications 5, 3969 (2014).
  14. F. Hellmann, P. Schultz, C. Grabow, J. Heitzig,  and J. Kurths, “Survivability of Deterministic Dynamical Systems,” Scientific Reports 6, 29654 (2016).
  15. B. Borkowska, “Probabilistic Load Flow,” IEEE Transactions on Power Apparatus and Systems PAS-93, 752–759 (1974).
  16. P. Schultz, J. Heitzig,  and J. Kurths, “Detours around basin stability in power networks,” New Journal of Physics 16, 125001 (2014a).
  17. J. Nitzbon, P. Schultz, J. Heitzig, J. Kurths,  and F. Hellmann, “Deciphering the imprint of topology on nonlinear dynamical network stability,” New Journal of Physics 19, 033029 (2017).
  18. F. Hellmann, P. Schultz, P. Jaros, R. Levchenko, T. Kapitaniak, J. Kurths,  and Y. Maistrenko, “Network-induced multistability through lossy coupling and exotic solitary states,” Nature Communications 11, 592 (2020).
  19. Z. Liu and Z. Zhang, “Quantifying transient stability of generators by basin stability and Kuramoto-like models,” in 2017 North American Power Symposium (NAPS) (2017) pp. 1–6.
  20. Z. Liu, X. He, Z. Ding,  and Z. Zhang, “A Basin Stability Based Metric for Ranking the Transient Stability of Generators,” IEEE Transactions on Industrial Informatics 15, 1450–1459 (2019).
  21. M. M. Bronstein, J. Bruna, T. Cohen,  and P. Veličković, “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges,” arXiv:2104.13478 [cs, stat]  (2021), arxiv:2104.13478 [cs, stat] .
  22. W. L. Hamilton, “Graph Representation Learning,” Synthesis Lectures on Artificial Intelligence and Machine Learning 14, 1–159 (2020).
  23. B. Donon, B. Donnot, I. Guyon,  and A. Marot, “Graph Neural Solver for Power Systems,” in Proceedings of the International Joint Conference on Neural Networks, Vol. 2019-July (Institute of Electrical and Electronics Engineers Inc., 2019).
  24. C. Kim, K. Kim, P. Balaprakash,  and M. Anitescu, “Graph Convolutional Neural Networks for Optimal Load Shedding under Line Contingency,” in 2019 IEEE Power Energy Society General Meeting (PESGM) (2019) pp. 1–5.
  25. V. Bolz, J. Rueß,  and A. Zell, “Power Flow Approximation Based on Graph Convolutional Networks,” in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (2019) pp. 1679–1686.
  26. N. Retiére, D. T. Ha,  and J.-G. Caputo, “Spectral Graph Analysis of the Geometry of Power Flows in Transmission Networks,” IEEE Systems Journal 14, 2736–2747 (2020).
  27. D. Wang, K. Zheng, Q. Chen, G. Luo,  and X. Zhang, “Probabilistic Power Flow Solution with Graph Convolutional Network,” in 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) (2020) pp. 650–654.
  28. D. Owerko, F. Gama,  and A. Ribeiro, “Optimal Power Flow Using Graph Neural Networks,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020) pp. 5930–5934.
  29. F. Gama, E. Tolstaya,  and A. Ribeiro, “Graph Neural Networks for Decentralized Controllers,”   (2020).
  30. G. S. Misyris, A. Venzke,  and S. Chatzivasileiadis, “Physics-Informed Neural Networks for Power Systems,” in 2020 IEEE Power Energy Society General Meeting (PESGM) (2020) pp. 1–5.
  31. Y. Liu, N. Zhang, D. Wu, A. Botterud, R. Yao,  and C. Kang, “Searching for Critical Power System Cascading Failures with Graph Convolutional Network,” IEEE Transactions on Control of Network Systems , 1–1 (2021).
  32. B. Bush, Y. Chen, D. Ofori-Boateng,  and Y. R. Gel, “Topological Machine Learning Methods for Power System Responses to Contingencies,” Proceedings of the AAAI Conference on Artificial Intelligence 35, 15262–15269 (2021).
  33. Y. Liu, N. Zhang, D. Wu, A. Botterud, R. Yao,  and C. Kang, “Guiding Cascading Failure Search with Interpretable Graph Convolutional Network,”  (2020), arxiv:2001.11553 [cs, eess] .
  34. B. Jhun, H. Choi, Y. Lee, J. Lee, C. H. Kim,  and B. Kahng, “Prediction and mitigation of nonlocal cascading failures using graph neural networks,”  (2022), arxiv:2208.00133 [physics] .
  35. Y. Chen, T. Jiang, M. Heleno, A. Moreira,  and Y. R. Gel, “Evaluating Distribution System Reliability with Hyperstructures Graph Convolutional Nets,”  (2022), arxiv:2211.07645 [cs, stat] .
  36. O. Stover, P. Karve, S. Mahadevan, W. Chen, H. Zhao, M. Tanneau,  and P. Van Hentenryck, “Just-In-Time Learning for Operational Risk Assessment in Power Grids,”  (2022), arxiv:2209.12762 [cs, eess] .
  37. J. B. Hansen, S. N. Anfinsen,  and F. M. Bianchi, “Power Flow Balancing With Decentralized Graph Neural Networks,” IEEE Transactions on Power Systems , 1–11 (2022).
  38. A. Yaniv, P. Kumar,  and Y. Beck, “Towards adoption of GNNs for power flow applications in distribution systems,” Electric Power Systems Research 216, 109005 (2023).
  39. Y. Yu, X. Jiang, D. Huang,  and Y. Li, “PIDGeuN: Graph Neural Network-Enabled Transient Dynamics Prediction of Networked Microgrids Through Full-Field Measurement,” arXiv:2204.08557 [cs, eess]  (2022), arxiv:2204.08557 [cs, eess] .
  40. Y. Che and C. Cheng, “Active learning and relevance vector machine in efficient estimate of basin stability for large-scale dynamic networks,” Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 053129 (2021).
  41. S.-G. Yang, B. J. Kim, S.-W. Son,  and H. Kim, “Power-grid stability predictions using transferable machine learning,” Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 123127 (2021).
  42. C. Nauck, M. Lindner, K. Schürholt, H. Zhang, P. Schultz, J. Kurths, I. Isenhardt,  and F. Hellmann, “Predicting basin stability of power grids using graph neural networks,” New Journal of Physics 24, 043041 (2022).
  43. Y. Kuramoto, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki (Springer, Berlin, Heidelberg, 1975) pp. 420–422.
  44. Y. Kuramoto, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics (2005).
  45. F. A. Rodrigues, T. K. D. Peron, P. Ji,  and J. Kurths, “The Kuramoto model in complex networks,” Physics Reports The Kuramoto Model in Complex Networks, 610, 1–98 (2016).
  46. A. Bergen and D. Hill, “A Structure Preserving Model for Power System Stability Analysis,” IEEE Transactions on Power Apparatus and Systems PAS-100, 25–35 (1981).
  47. P. Schultz, J. Heitzig,  and J. Kurths, “A random growth model for power grids and other spatially embedded infrastructure networks,” The European Physical Journal Special Topics 223, 2593–2610 (2014b).
  48. A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye,  and T. J. Overbye, “Grid Structural Characteristics as Validation Criteria for Synthetic Networks,” IEEE Transactions on Power Systems 32, 3258–3265 (2017).
  49. A. Birchfield, “ACTIVSg2000: 2000-bus synthetic grid on footprint of Texas, visited on Nov. 1, 2021,” https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ (2021).
  50. S. Auer, F. Hellmann, M. Krause,  and J. Kurths, “Stability of synchrony against local intermittent fluctuations in tree-like power grids,” Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 127003 (2017).
  51. L. D. Brown, T. T. Cai,  and A. DasGupta, “Interval Estimation for a Binomial Proportion,” Statistical Science 16, 101–133 (2001).
  52. T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” arXiv:1609.02907 [cs, stat]  (2017), arxiv:1609.02907 [cs, stat] .
  53. F. M. Bianchi, D. Grattarola, L. Livi,  and C. Alippi, “Graph Neural Networks with Convolutional ARMA Filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence , 1–1 (2021).
  54. W. L. Hamilton, R. Ying,  and J. Leskovec, “Inductive Representation Learning on Large Graphs,” arXiv:1706.02216 [cs, stat]  (2018), arxiv:1706.02216 [cs, stat] .
  55. J. Du, S. Zhang, G. Wu, J. M. F. Moura,  and S. Kar, “Topology Adaptive Graph Convolutional Networks,”   (2017).
  56. J. Bezanson, A. Edelman, S. Karpinski,  and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM Review  (2017), 10.1137/141000671.
  57. C. Rackauckas and Q. Nie, “DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia,” Journal of Open Research Software 5, 15 (2017).
  58. M. Lindner, L. Lincoln, F. Drauschke, J. M. Koulen, H. Würfel, A. Plietzsch,  and F. Hellmann, “NetworkDynamics.jl—Composing and simulating complex networks in Julia,” Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 063133 (2021).
  59. A. Plietzsch, R. Kogler, S. Auer, J. Merino, A. Gil-de-Muro, J. Liße, C. Vogel,  and F. Hellmann, “PowerDynamics.jl – An experimentally validated open-source package for the dynamical analysis of power grids,” arXiv:2101.02103 [cs, eess]  (2021), arxiv:2101.02103 [cs, eess] .
  60. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,  and S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in Advances in Neural Information Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox,  and R. Garnett (Curran Associates, Inc., 2019) pp. 8024–8035.
  61. M. Fey and J. E. Lenssen, “FAST GRAPH REPRESENTATION LEARNING WITH PYTORCH GEOMETRIC,”  , 9 (2019).
  62. P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan,  and I. Stoica, “Ray: A Distributed Framework for Emerging AI Applications,” arXiv:1712.05889 [cs, stat]  (2018), arxiv:1712.05889 [cs, stat] .
  63. P. Schultz, https://github.com/PIK-ICoNe/SyntheticNetworks.jl (2020).
Citations (10)

Summary

We haven't generated a summary for this paper yet.