Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NPU-Accelerated Imitation Learning for Thermal Optimization of QoS-Constrained Heterogeneous Multi-Cores (2206.05459v1)

Published 11 Jun 2022 in cs.DC and cs.AR

Abstract: Application migration and dynamic voltage and frequency scaling (DVFS) are indispensable means for fully exploiting the available potential in thermal optimization of a heterogeneous clustered multi-core processor under user-defined quality of service (QoS) targets. However, selecting the core to execute each application and the voltage/frequency (V/f) levels of each cluster is a complex problem because 1) the diverse characteristics and QoS targets of applications require different optimizations, and 2) per-cluster DVFS requires a global optimization considering all running applications. State-of-the-art resource management techniques for power or temperature minimization either rely on measurements that are often not available (such as power) or fail to consider all the dimensions of the problem (e.g., by using simplified analytical models). Imitation learning (IL) enables to use the optimality of an oracle policy, yet at low run-time overhead, by training a model from oracle demonstrations. We are the first to employ IL for temperature minimization under QoS targets. We tackle the complexity by training a neural network (NN) and accelerate the NN inference using a neural processing unit (NPU). While such NN accelerators are becoming increasingly widespread on end devices, they are so far only used to accelerate user applications. In contrast, we use an existing accelerator on a real platform to accelerate NN-based resource management. Our evaluation on a HiKey 970 board with an Arm big.LITTLE CPU and an NPU shows significant temperature reductions at a negligible run-time overhead, with unseen applications and different cooling than used for training.

Citations (3)

Summary

We haven't generated a summary for this paper yet.