Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LTL-Transfer: Skill Transfer for Temporal Task Specification (2206.05096v3)

Published 10 Jun 2022 in cs.RO

Abstract: Deploying robots in real-world environments, such as households and manufacturing lines, requires generalization across novel task specifications without violating safety constraints. Linear temporal logic (LTL) is a widely used task specification language with a compositional grammar that naturally induces commonalities among tasks while preserving safety guarantees. However, most prior work on reinforcement learning with LTL specifications treats every new task independently, thus requiring large amounts of training data to generalize. We propose LTL-Transfer, a zero-shot transfer algorithm that composes task-agnostic skills learned during training to safely satisfy a wide variety of novel LTL task specifications. Experiments in Minecraft-inspired domains show that after training on only 50 tasks, LTL-Transfer can solve over 90% of 100 challenging unseen tasks and 100% of 300 commonly used novel tasks without violating any safety constraints. We deployed LTL-Transfer at the task-planning level of a quadruped mobile manipulator to demonstrate its zero-shot transfer ability for fetch-and-deliver and navigation tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jason Xinyu Liu (7 papers)
  2. Ankit Shah (47 papers)
  3. Eric Rosen (20 papers)
  4. George Konidaris (71 papers)
  5. Stefanie Tellex (45 papers)
  6. Mingxi Jia (11 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com