Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Rigorous Envelope Approximation for Interface Wave-Packets in Maxwell's Equations with 2D Localization (2206.03154v2)

Published 7 Jun 2022 in math.AP and nlin.PS

Abstract: We study transverse magnetic (vector valued) wave-packets in the time dependent Kerr nonlinear Maxwell's equations at the interface of two inhomogeneous dielectrics with an instantaneous material response. The resulting model is quasilinear. The problem is solved on each side of the interface and the fields are coupled via natural interface conditions. The wave-packet is localized at the interface and propagates in the tangential direction. For a slowly modulated envelope approximation the nonlinear Schr\"odinger equation is formally derived as an amplitude equation for the envelope. We rigorously justify the approximation in a Sobolev space norm on the corresponding asymptotically large time intervals. The well-posedness result for the quasilinear Maxwell problem builds on the local theory of [R. Schnaubelt und M. Spitz, Local wellposedness of quasilinear Maxwell equations with conservative interface conditions, \textit{Commun. Math. Sci.}, accepted, 2022] and extends this to asymptotically large time intervals for small data using an involved bootstrapping argument.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.