Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Medical Coding with Biomedical Transformer Ensembles and Zero/Few-shot Learning (2206.02662v1)

Published 1 May 2022 in cs.IR, cs.CL, and cs.LG

Abstract: Medical coding (MC) is an essential pre-requisite for reliable data retrieval and reporting. Given a free-text reported term (RT) such as "pain of right thigh to the knee", the task is to identify the matching lowest-level term (LLT) - in this case "unilateral leg pain" - from a very large and continuously growing repository of standardized medical terms. However, automating this task is challenging due to a large number of LLT codes (as of writing over 80,000), limited availability of training data for long tail/emerging classes, and the general high accuracy demands of the medical domain. With this paper, we introduce the MC task, discuss its challenges, and present a novel approach called xTARS that combines traditional BERT-based classification with a recent zero/few-shot learning approach (TARS). We present extensive experiments that show that our combined approach outperforms strong baselines, especially in the few-shot regime. The approach is developed and deployed at Bayer, live since November 2021. As we believe our approach potentially promising beyond MC, and to ensure reproducibility, we release the code to the research community.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.