Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In search of necessary and sufficient conditions to solve parabolic Anderson model with rough noise (2206.02641v2)

Published 6 Jun 2022 in math.PR

Abstract: This paper attempts to obtain necessary and sufficient conditions to solve the parabolic Anderson model with fractional Gaussian noises: $\frac{\partial}{\partial t}u(t,x)=\frac{1}{2}\Delta u(t,x)+u(t,x)\dot{W}(t,x)$, where $ {W}(t,x)$ is the fractional Brownian field with temporal Hurst parameter $H_0\in [1/2, 1) $ and spatial Hurst parameters $H$ $ =(H_1, \cdots, H_d)$ $ \in (0, 1)d$, and $\dot{W}(t,x)=\frac{\partial {d+1}}{\partial t \partial x_1 \cdots \partial x_d}W(t,x)$. When $d=1$ and when $(H_0,H)\in(\frac 12,1)\times(\frac 1{20},\frac 12)$ we show that the condition $2H_0+H>5/2$ is necessary and sufficient to ensure the existence of a unique solution for the parabolic Anderson Model. When $d\ge 2$, we find the necessary and sufficient condition on the Hurst parameters so that each chaos of the solution candidate is square integrable.

Summary

We haven't generated a summary for this paper yet.