2000 character limit reached
A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T (2206.02339v3)
Published 6 Jun 2022 in hep-ex and astro-ph.HE
Abstract: We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c$2$.
- Aghanim, N. et al. (Planck Collaboration), A&A 641, A6 (2020).
- Y. Meng et al. (PandaX-4T Collaboration), Phys. Rev. Lett. 127, 261802 (2021).
- D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017).
- E. Aprile et al. (XENON Collaboration), J. Cosmol. Astropart. Phys. 2020, 031 (2020).
- D. S. Akerib et al. (LUX-ZEPLIN Collaboration), Phys. Rev. D 101, 052002 (2020).
- E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett. 121, 111302 (2018).
- P. Agnes et al. (DarkSide Collaboration), Phys. Rev. D 98, 102006 (2018).
- C. E. Aalseth et al. (DarkSide Collaboration), Eur. Phys. J. Plus 133, 131 (2018).
- C. Amole et al. (PICO Collaboration), Phys. Rev. D 100, 022001 (2019).
- E. Behnke et al. (PICASSO collaboration), Astroparticle Physics 90, 85 (2017).
- C. Bartram et al. (ADMX Collaboration), Phys. Rev. Lett. 127, 261803 (2021).
- K. M. Backes et al. (HAYSTAC Collaboration), Nature 590, 238 (2021).
- B. Moore, Nature 370, 629 (1994).
- K. A. Olive and M. S. Turner, Phys. Rev. D 25, 213 (1982).
- S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 72, 17 (1994).
- E. Bulbul et al., Astrophys. J. 789, 13 (2014).
- J. Lewin and P. Smith, Astroparticle Physics 6, 87 (1996).
- K. J. Kang et al., J. Phys.: Conf. Ser 203, 012028 (2010).
- L. Zhao and J. Liu, Front. Phys. (Beijing) 15, 44301 (2020), arXiv:2004.04547 [astro-ph.IM] .
- W. Ma et al., J. Instrum. 15, P12038 (2020).
- M. Szydagis et al. (NEST collaboration), Zenodo (2018), https://doi.org/10.5281/zenodo.1314499.
- M. Szydagis et al. (NEST Collaboration), Instruments 5 (2021), 10.3390/instruments5010013.
- L. Gu et al., (2022), 10.48550/arXiv.2205.15771.
- A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).
- A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
- J. S. Gainer et al., JHEP 10, 078 (2014), arXiv:1404.7129 [hep-ph] .
- O. Mattelaer, Eur. Phys. J. C 76, 674 (2016).
- E. Gross and O. Vitells, Eur. Phys. J. C 70, 525 (2010).
- J.-Y. Liao et al., J. High Energy Phys. 27, 24 (2020).
- L. Bouchet et al., Astrophys. J. 739, 29 (2011).
- H. Zhang et al. (PandaX Collaboration), Sci. China Phys. Mech. Astron. 62, 31011 (2019).
- E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett. 129, 161805 (2022).