Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Between Rate-Distortion Theory & Value Equivalence in Model-Based Reinforcement Learning (2206.02025v1)

Published 4 Jun 2022 in cs.LG, cs.IT, and math.IT

Abstract: The quintessential model-based reinforcement-learning agent iteratively refines its estimates or prior beliefs about the true underlying model of the environment. Recent empirical successes in model-based reinforcement learning with function approximation, however, eschew the true model in favor of a surrogate that, while ignoring various facets of the environment, still facilitates effective planning over behaviors. Recently formalized as the value equivalence principle, this algorithmic technique is perhaps unavoidable as real-world reinforcement learning demands consideration of a simple, computationally-bounded agent interacting with an overwhelmingly complex environment. In this work, we entertain an extreme scenario wherein some combination of immense environment complexity and limited agent capacity entirely precludes identifying an exactly value-equivalent model. In light of this, we embrace a notion of approximate value equivalence and introduce an algorithm for incrementally synthesizing simple and useful approximations of the environment from which an agent might still recover near-optimal behavior. Crucially, we recognize the information-theoretic nature of this lossy environment compression problem and use the appropriate tools of rate-distortion theory to make mathematically precise how value equivalence can lend tractability to otherwise intractable sequential decision-making problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Dilip Arumugam (26 papers)
  2. Benjamin Van Roy (88 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.