Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Additive MIL: Intrinsically Interpretable Multiple Instance Learning for Pathology (2206.01794v2)

Published 3 Jun 2022 in cs.CV and cs.LG

Abstract: Multiple Instance Learning (MIL) has been widely applied in pathology towards solving critical problems such as automating cancer diagnosis and grading, predicting patient prognosis, and therapy response. Deploying these models in a clinical setting requires careful inspection of these black boxes during development and deployment to identify failures and maintain physician trust. In this work, we propose a simple formulation of MIL models, which enables interpretability while maintaining similar predictive performance. Our Additive MIL models enable spatial credit assignment such that the contribution of each region in the image can be exactly computed and visualized. We show that our spatial credit assignment coincides with regions used by pathologists during diagnosis and improves upon classical attention heatmaps from attention MIL models. We show that any existing MIL model can be made additive with a simple change in function composition. We also show how these models can debug model failures, identify spurious features, and highlight class-wise regions of interest, enabling their use in high-stakes environments such as clinical decision-making.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube