Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning (2206.01558v1)

Published 3 Jun 2022 in cs.LG

Abstract: Characterizing aleatoric and epistemic uncertainty on the predicted rewards can help in building reliable reinforcement learning (RL) systems. Aleatoric uncertainty results from the irreducible environment stochasticity leading to inherently risky states and actions. Epistemic uncertainty results from the limited information accumulated during learning to make informed decisions. Characterizing aleatoric and epistemic uncertainty can be used to speed up learning in a training environment, improve generalization to similar testing environments, and flag unfamiliar behavior in anomalous testing environments. In this work, we introduce a framework for disentangling aleatoric and epistemic uncertainty in RL. (1) We first define four desiderata that capture the desired behavior for aleatoric and epistemic uncertainty estimation in RL at both training and testing time. (2) We then present four RL models inspired by supervised learning (i.e. Monte Carlo dropout, ensemble, deep kernel learning models, and evidential networks) to instantiate aleatoric and epistemic uncertainty. Finally, (3) we propose a practical evaluation method to evaluate uncertainty estimation in model-free RL based on detection of out-of-distribution environments and generalization to perturbed environments. We present theoretical and experimental evidence to validate that carefully equipping model-free RL agents with supervised learning uncertainty methods can fulfill our desiderata.

Citations (22)

Summary

We haven't generated a summary for this paper yet.