Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transferring Studies Across Embodiments: A Case Study in Confusion Detection (2206.01493v1)

Published 3 Jun 2022 in cs.HC, cs.AI, cs.CY, cs.LG, and cs.RO

Abstract: Human-robot studies are expensive to conduct and difficult to control, and as such researchers sometimes turn to human-avatar interaction in the hope of faster and cheaper data collection that can be transferred to the robot domain. In terms of our work, we are particularly interested in the challenge of detecting and modelling user confusion in interaction, and as part of this research programme, we conducted situated dialogue studies to investigate users' reactions in confusing scenarios that we give in both physical and virtual environments. In this paper, we present a combined review of these studies and the results that we observed across these two embodiments. For the physical embodiment, we used a Pepper Robot, while for the virtual modality, we used a 3D avatar. Our study shows that despite attitudinal differences and technical control limitations, there were a number of similarities detected in user behaviour and self-reporting results across embodiment options. This work suggests that, while avatar interaction is no true substitute for robot interaction studies, sufficient care in study design may allow well executed human-avatar studies to supplement more challenging human-robot studies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.