Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the average behavior of the Fourier coefficients of $j^{th}$ symmetric power $L$-function over a certain sequences of positive integers (2206.01491v1)

Published 3 Jun 2022 in math.NT

Abstract: In this paper, we investigate the average behavior of the $n{th}$ normalized Fourier coefficients of the $j{th}$ ($j \geq 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,sym{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb{Z})$ over a certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum $$\sum_{\stackrel{a_{1}{2}+a_{2}{2}+a_{3}{2}+a_{4}{2}+a_{5}{2}+a_{6}{2}\leq {x}}{(a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in\mathbb{Z}{6}}}\lambda{2}{sym{j}f}(a{1}{2}+a_{2}{2}+a_{3}{2}+a_{4}{2}+a_{5}{2}+a_{6}{2}),$$ where $x$ is sufficiently large, and $$L(s,sym{j}f):=\sum_{n=1}{\infty}\dfrac{\lambda_{sym{j}f}(n)}{n{s}}.$$ When $j=2$, the error term which we obtain, improves the earlier known result.

Summary

We haven't generated a summary for this paper yet.