Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Influence Maximization in Hypergraphs (2206.01394v1)

Published 3 Jun 2022 in cs.SI

Abstract: Influence maximization in complex networks, i.e., maximizing the size of influenced nodes via selecting K seed nodes for a given spreading process, has attracted great attention in recent years. However, the influence maximization problem in hypergraphs, in which the hyperedges are leveraged to represent the interactions among more than two nodes, is still an open question. In this paper, we propose an adaptive degree-based heuristic algorithm, i.e., Heuristic Degree Discount (HDD), which iteratively selects nodes with low influence overlap as seeds, to solve the influence maximization problem in hypergraphs. We further extend algorithms from ordinary networks as baselines and compare the performance of the proposed algorithm and baselines on both real data and synthetic hypergraphs. Results show that HDD outperforms the baselines in terms of both effectiveness and efficiency. Moreover, the experiments on synthetic hypergraphs indicate that HDD shows high performance, especially in hypergraphs with heterogeneous degree distribution.

Citations (1)

Summary

We haven't generated a summary for this paper yet.