Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages (2206.01118v1)

Published 2 Jun 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Diabetic retinopathy is an eye-related pathology creating abnormalities and causing visual impairment, proper treatment of which requires identifying irregularities. This research uses a hemorrhage detection method and compares classification of conventional and deep features. Especially, method identifies hemorrhage connected with blood vessels or reside at retinal border and reported challenging. Initially, adaptive brightness adjustment and contrast enhancement rectify degraded images. Prospective locations of hemorrhages are estimated by a Gaussian matched filter, entropy thresholding, and morphological operation. Hemorrhages are segmented by a novel technique based on regional variance of intensities. Features are then extracted by conventional methods and deep models for training support vector machines, and results evaluated. Evaluation metrics for each model are promising, but findings suggest that comparatively, deep models are more effective than conventional features.

Citations (3)

Summary

We haven't generated a summary for this paper yet.