Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where are my Neighbors? Exploiting Patches Relations in Self-Supervised Vision Transformer (2206.00481v2)

Published 1 Jun 2022 in cs.CV and cs.LG

Abstract: Vision Transformers (ViTs) enabled the use of the transformer architecture on vision tasks showing impressive performances when trained on big datasets. However, on relatively small datasets, ViTs are less accurate given their lack of inductive bias. To this end, we propose a simple but still effective Self-Supervised Learning (SSL) strategy to train ViTs, that without any external annotation or external data, can significantly improve the results. Specifically, we define a set of SSL tasks based on relations of image patches that the model has to solve before or jointly the supervised task. Differently from ViT, our RelViT model optimizes all the output tokens of the transformer encoder that are related to the image patches, thus exploiting more training signals at each training step. We investigated our methods on several image benchmarks finding that RelViT improves the SSL state-of-the-art methods by a large margin, especially on small datasets. Code is available at: https://github.com/guglielmocamporese/relvit.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Guglielmo Camporese (8 papers)
  2. Elena Izzo (2 papers)
  3. Lamberto Ballan (32 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.