Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Online Learning of Quantum States (2206.00220v2)

Published 1 Jun 2022 in cs.LG and quant-ph

Abstract: The problem of efficient quantum state learning, also called shadow tomography, aims to comprehend an unknown $d$-dimensional quantum state through POVMs. Yet, these states are rarely static; they evolve due to factors such as measurements, environmental noise, or inherent Hamiltonian state transitions. This paper leverages techniques from adaptive online learning to keep pace with such state changes. The key metrics considered for learning in these mutable environments are enhanced notions of regret, specifically adaptive and dynamic regret. We present adaptive and dynamic regret bounds for online shadow tomography, which are polynomial in the number of qubits and sublinear in the number of measurements. To support our theoretical findings, we include numerical experiments that validate our proposed models.

Citations (11)

Summary

We haven't generated a summary for this paper yet.