Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Decentralized Saddle-Point Problems with Different Constants of Strong Convexity and Strong Concavity (2206.00090v2)

Published 31 May 2022 in math.OC

Abstract: Large-scale saddle-point problems arise in such machine learning tasks as GANs and linear models with affine constraints. In this paper, we study distributed saddle-point problems (SPP) with strongly-convex-strongly-concave smooth objectives that have different strong convexity and strong concavity parameters of composite terms, which correspond to min and max variables, and bilinear saddle-point part. We consider two types of first-order oracles: deterministic (returns gradient) and stochastic (returns unbiased stochastic gradient). Our method works in both cases and takes several consensus steps between oracle calls.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.