Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantically-enhanced Topic Recommendation System for Software Projects (2206.00085v2)

Published 31 May 2022 in cs.SE, cs.IR, and cs.LG

Abstract: Software-related platforms have enabled their users to collaboratively label software entities with topics. Tagging software repositories with relevant topics can be exploited for facilitating various downstream tasks. For instance, a correct and complete set of topics assigned to a repository can increase its visibility. Consequently, this improves the outcome of tasks such as browsing, searching, navigation, and organization of repositories. Unfortunately, assigned topics are usually highly noisy, and some repositories do not have well-assigned topics. Thus, there have been efforts on recommending topics for software projects, however, the semantic relationships among these topics have not been exploited so far. We propose two recommender models for tagging software projects that incorporate the semantic relationship among topics. Our approach has two main phases; (1) we first take a collaborative approach to curate a dataset of quality topics specifically for the domain of software engineering and development. We also enrich this data with the semantic relationships among these topics and encapsulate them in a knowledge graph we call SED-KGraph. Then, (2) we build two recommender systems; The first one operates only based on the list of original topics assigned to a repository and the relationships specified in our knowledge graph. The second predictive model, however, assumes there are no topics available for a repository, hence it proceeds to predict the relevant topics based on both textual information of a software project and SED-KGraph. We built SED-KGraph in a crowd-sourced project with 170 contributors from both academia and industry. The experiment results indicate that our solutions outperform baselines that neglect the semantic relationships among topics by at least 25% and 23% in terms of ASR and MAP metrics.

Citations (9)

Summary

We haven't generated a summary for this paper yet.