Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the solvability of weakly linear systems of fuzzy relation equations (2205.15292v1)

Published 25 May 2022 in cs.AI, cs.CL, and cs.LO

Abstract: Systems of fuzzy relation equations and inequalities in which an unknown fuzzy relation is on the one side of the equation or inequality are linear systems. They are the most studied ones, and a vast literature on linear systems focuses on finding solutions and solvability criteria for such systems. The situation is quite different with the so-called weakly linear systems, in which an unknown fuzzy relation is on both sides of the equation or inequality. Precisely, the scholars have only given the characterization of the set of exact solutions to such systems. This paper describes the set of fuzzy relations that solve weakly linear systems to a certain degree and provides ways to compute them. We pay special attention to developing the algorithms for computing fuzzy preorders and fuzzy equivalences that are solutions to some extent to weakly linear systems. We establish additional properties for the set of such approximate solutions over some particular types of complete residuated lattices. We demonstrate the advantage of this approach via many examples that arise from the problem of aggregation of fuzzy networks.

Citations (9)

Summary

We haven't generated a summary for this paper yet.