Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pressure Data-Driven Variational Multiscale Reduced Order Models (2205.15118v2)

Published 30 May 2022 in math.NA and cs.NA

Abstract: In this paper, we develop data-driven closure/correction terms to increase the pressure and velocity accuracy of reduced order models (ROMs) for fluid flows. Specifically, we propose the first pressure-based data-driven variational multiscale ROM, in which we use the available data to construct closure/correction terms for both the momentum equation and the continuity equation. Our numerical investigation of the two-dimensional flow past a circular cylinder at Re=50000 in the marginally-resolved regime shows that the novel pressure data-driven variational multiscale ROM yields significantly more accurate velocity and pressure approximations than the standard ROM and, more importantly, than the original data-driven variational multiscale ROM (i.e., without pressure components). In particular, our numerical results show that adding the closure/correction term in the momentum equation significantly improves both the velocity and the pressure approximations, whereas adding the closure/correction term in the continuity equation improves only the pressure approximation.

Citations (9)

Summary

We haven't generated a summary for this paper yet.