Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Personalized Bundle Creative Generation with Contrastive Non-Autoregressive Decoding (2205.14970v2)

Published 30 May 2022 in cs.IR

Abstract: Current bundle generation studies focus on generating a combination of items to improve user experience. In real-world applications, there is also a great need to produce bundle creatives that consist of mixture types of objects (e.g., items, slogans and templates) for achieving better promotion effect. We study a new problem named bundle creative generation: for given users, the goal is to generate personalized bundle creatives that the users will be interested in. To take both quality and efficiency into account, we propose a contrastive non-autoregressive model that captures user preferences with ingenious decoding objective. Experiments on large-scale real-world datasets verify that our proposed model shows significant advantages in terms of creative quality and generation speed.

Citations (12)

Summary

We haven't generated a summary for this paper yet.