Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigating Out-of-Distribution Data Density Overestimation in Energy-Based Models (2205.14817v1)

Published 30 May 2022 in cs.LG

Abstract: Deep energy-based models (EBMs), which use deep neural networks (DNNs) as energy functions, are receiving increasing attention due to their ability to learn complex distributions. To train deep EBMs, the maximum likelihood estimation (MLE) with short-run Langevin Monte Carlo (LMC) is often used. While the MLE with short-run LMC is computationally efficient compared to an MLE with full Markov Chain Monte Carlo (MCMC), it often assigns high density to out-of-distribution (OOD) data. To address this issue, here we systematically investigate why the MLE with short-run LMC can converge to EBMs with wrong density estimates, and reveal that the heuristic modifications to LMC introduced by previous works were the main problem. We then propose a Uniform Support Partitioning (USP) scheme that optimizes a set of points to evenly partition the support of the EBM and then uses the resulting points to approximate the EBM-MLE loss gradient. We empirically demonstrate that USP avoids the pitfalls of short-run LMC, leading to significantly improved OOD data detection performance on Fashion-MNIST.

Citations (1)

Summary

We haven't generated a summary for this paper yet.