Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential mixing and limit theorems of quasi-periodically forced 2D stochastic Navier-Stokes Equations in the hypoelliptic setting (2205.14348v2)

Published 28 May 2022 in math.PR, math.AP, and math.DS

Abstract: We consider the incompressible 2D Navier-Stokes equations on the torus driven by a deterministic time quasi-periodic force and a noise that is white in time and degenerate in Fourier space. We show that the asymptotic statistical behavior is characterized by a quasi-periodic invariant measure that exponentially attracts the law of all solutions. The result is true for any value of the viscosity $\nu>0$ and does not depend on the strength of the external forces. By utilizing this quasi-periodic invariant measure, we establish a quantitative version of the strong law of large numbers and central limit theorem for the continuous time inhomogeneous solution processes with explicit convergence rates. It turns out that the convergence rate in the central limit theorem depends on the time inhomogeneity through the Diophantine approximation property on the quasi-periodic frequency of the quasi-periodic force.

Summary

We haven't generated a summary for this paper yet.