Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Digital Twin: Context, Enabling Technologies and Opportunities (2205.14206v2)

Published 27 May 2022 in cs.NI

Abstract: The proliferation of emergent network applications (e.g., telesurgery, metaverse) is increasing the difficulty of managing modern communication networks. These applications entail stringent network requirements (e.g., ultra-low deterministic latency), which hinders network operators to manage their resources efficiently. In this article, we introduce the network digital twin (NDT), a renovated concept of classical network modeling tools whose goal is to build accurate data-driven network models that can operate in real-time. We describe the general architecture of the NDT and argue that modern ML technologies enable building some of its core components. Then, we present a case study that leverages a ML-based NDT for network performance evaluation and apply it to routing optimization in a QoS-aware use case. Lastly, we describe some key open challenges and research opportunities yet to be explored to achieve effective deployment of NDTs in real-world networks.

Citations (76)

Summary

We haven't generated a summary for this paper yet.