Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Markovian Homogenized Models in Viscoelasticity (2205.14139v2)

Published 27 May 2022 in math.NA and cs.NA

Abstract: Fully resolving dynamics of materials with rapidly-varying features involves expensive fine-scale computations which need to be conducted on macroscopic scales. The theory of homogenization provides an approach to derive effective macroscopic equations which eliminates the small scales by exploiting scale separation. An accurate homogenized model avoids the computationally-expensive task of numerically solving the underlying balance laws at a fine scale, thereby rendering a numerical solution of the balance laws more computationally tractable. In complex settings, homogenization only defines the constitutive model implicitly, and machine learning can be used to learn the constitutive model explicitly from localized fine-scale simulations. In the case of one-dimensional viscoelasticity, the linearity of the model allows for a complete analysis. We establish that the homogenized constitutive model may be approximated by a recurrent neural network (RNN) that captures the memory. The memory is encapsulated in the evolution of an appropriate finite set of internal variables, discovered through the learning process and dependent on the history of the strain. Simulations are presented which validate the theory. Guidance for the learning of more complex models, such as arise in plasticity, by similar techniques, is given.

Citations (9)

Summary

We haven't generated a summary for this paper yet.