Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Reconstruction of Multi Branch Feature Multiplexing Fusion Network with Mixed Multi-layer Attention (2205.13738v1)

Published 27 May 2022 in cs.CV and eess.IV

Abstract: Image super-resolution reconstruction achieves better results than traditional methods with the help of the powerful nonlinear representation ability of convolution neural network. However, some existing algorithms also have some problems, such as insufficient utilization of phased features, ignoring the importance of early phased feature fusion to improve network performance, and the inability of the network to pay more attention to high-frequency information in the reconstruction process. To solve these problems, we propose a multi-branch feature multiplexing fusion network with mixed multi-layer attention (MBMFN), which realizes the multiple utilization of features and the multistage fusion of different levels of features. To further improve the networks performance, we propose a lightweight enhanced residual channel attention (LERCA), which can not only effectively avoid the loss of channel information but also make the network pay more attention to the key channel information and benefit from it. Finally, the attention mechanism is introduced into the reconstruction process to strengthen the restoration of edge texture and other details. A large number of experiments on several benchmark sets show that, compared with other advanced reconstruction algorithms, our algorithm produces highly competitive objective indicators and restores more image detail texture information.

Citations (6)

Summary

We haven't generated a summary for this paper yet.