Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic Grasping (2205.13561v3)

Published 26 May 2022 in cs.RO and cs.AI

Abstract: Learning-based grasping can afford real-time grasp motion planning of multi-fingered robotics hands thanks to its high computational efficiency. However, learning-based methods are required to explore large search spaces during the learning process. The search space causes low learning efficiency, which has been the main barrier to its practical adoption. In addition, the trained policy lacks a generalizable outcome unless objects are identical to the trained objects. In this work, we develop a novel Physics-Guided Deep Reinforcement Learning with a Hierarchical Reward Mechanism to improve learning efficiency and generalizability for learning-based autonomous grasping. Unlike conventional observation-based grasp learning, physics-informed metrics are utilized to convey correlations between features associated with hand structures and objects to improve learning efficiency and outcomes. Further, the hierarchical reward mechanism enables the robot to learn prioritized components of the grasping tasks. Our method is validated in robotic grasping tasks with a 3-finger MICO robot arm. The results show that our method outperformed the standard Deep Reinforcement Learning methods in various robotic grasping tasks.

Summary

We haven't generated a summary for this paper yet.