Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Upper bound for the number of privileged words (2205.12909v1)

Published 25 May 2022 in math.CO and cs.DM

Abstract: A non-empty word $w$ is a \emph{border} of a word $u$ if $\vert w\vert<\vert u\vert$ and $w$ is both a prefix and a suffix of $u$. A word $u$ is \emph{privileged} if $\vert u\vert\leq 1$ or if $u$ has a privileged border $w$ that appears exactly twice in $u$. Peltom\"aki (2016) presented the following open problem: ``Give a nontrivial upper bound for $B(n)$'', where $B(n)$ denotes the number of privileged words of length $n$. Let $\ln{[0]}{(n)}=n$ and let $\ln{[j]}{(n)}=\ln{(\ln{[j-1]}{(n)})}$, where $j,n$ are positive integers. We show that if $q>1$ is a size of the alphabet and $j\geq 3$ is an integer then there are constants $\alpha_j$ and $n_j$ such that [B(n)\leq \alpha_j\frac{q{n}\sqrt{\ln{n}}}{\sqrt{n}}\ln{[j]}{(n)}\prod_{i=2}{j-1}\sqrt{\ln{[i]}(n)}\mbox{, where }n\geq n_j\mbox{.}] This result improves the upper bound of Rukavicka (2020).

Citations (1)

Summary

We haven't generated a summary for this paper yet.