Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
37 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
103 tokens/sec
2000 character limit reached

Structure Unbiased Adversarial Model for Medical Image Segmentation (2205.12857v4)

Published 25 May 2022 in eess.IV and cs.CV

Abstract: Generative models have been widely proposed in image recognition to generate more images where the distribution is similar to that of the real ones. It often introduces a discriminator network to differentiate the real data from the generated ones. Such models utilise a discriminator network tasked with differentiating style transferred data from data contained in the target dataset. However in doing so the network focuses on discrepancies in the intensity distribution and may overlook structural differences between the datasets. In this paper we formulate a new image-to-image translation problem to ensure that the structure of the generated images is similar to that in the target dataset. We propose a simple, yet powerful Structure-Unbiased Adversarial (SUA) network which accounts for both intensity and structural differences between the training and test sets when performing image segmentation. It consists of a spatial transformation block followed by an intensity distribution rendering module. The spatial transformation block is proposed to reduce the structure gap between the two images, and also produce an inverse deformation field to warp the final segmented image back. The intensity distribution rendering module then renders the deformed structure to an image with the target intensity distribution. Experimental results show that the proposed SUA method has the capability to transfer both intensity distribution and structural content between multiple datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube