Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Holonomic equations and efficient random generation of binary trees (2205.11982v6)

Published 23 May 2022 in cs.DS and cs.CC

Abstract: Holonomic equations are recursive equations which allow computing efficiently numbers of combinatoric objects. R{\'e}my showed that the holonomic equation associated with binary trees yields an efficient linear random generator of binary trees. I extend this paradigm to Motzkin trees and Schr{\"o}der trees and show that despite slight differences my algorithm that generates random Schr{\"o}der trees has linear expected complexity and my algorithm that generates Motzkin trees is in O(n) expected complexity, only if we can implement a specific oracle with a O(1) complexity. For Motzkin trees, I propose a solution which works well for realistic values (up to size ten millions) and yields an efficient algorithm.

Summary

We haven't generated a summary for this paper yet.