Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action Recognition using WiFi (2205.11945v1)

Published 24 May 2022 in cs.CV and eess.SP

Abstract: WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring due to the pervasive and unobtrusive nature of WiFi signals. However, the efficacy of WiFi signals is prone to be influenced by the change in the ambient environment and varies over different sub-carriers. To remedy this issue, we propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios. In particular, a new Gabor residual block is designed to address the impact of the changing surrounding environment with a focus on learning reliable and robust temporal-frequency representations of WiFi signals. In each block, the Gabor layer is integrated with the anti-aliasing layer in a residual manner to gain the shift-invariant features. Furthermore, fractal temporal and frequency self-attention are proposed in a joint effort to explicitly concentrate on the efficacy of WiFi signals and thus enhance the quality of output features scattered in different subcarriers. Experimental results throughout our wireless-vision action recognition dataset (WVAR) and three public datasets demonstrate that our proposed GraSens scheme outperforms state-of-the-art methods with respect to recognition accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.