Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Approximation speed of quantized vs. unquantized ReLU neural networks and beyond (2205.11874v2)

Published 24 May 2022 in cs.IT, cs.NE, and math.IT

Abstract: We deal with two complementary questions about approximation properties of ReLU networks. First, we study how the uniform quantization of ReLU networks with real-valued weights impacts their approximation properties. We establish an upper-bound on the minimal number of bits per coordinate needed for uniformly quantized ReLU networks to keep the same polynomial asymptotic approximation speeds as unquantized ones. We also characterize the error of nearest-neighbour uniform quantization of ReLU networks. This is achieved using a new lower-bound on the Lipschitz constant of the map that associates the parameters of ReLU networks to their realization, and an upper-bound generalizing classical results. Second, we investigate when ReLU networks can be expected, or not, to have better approximation properties than other classical approximation families. Indeed, several approximation families share the following common limitation: their polynomial asymptotic approximation speed of any set is bounded from above by the encoding speed of this set. We introduce a new abstract property of approximation families, called infinite-encodability, which implies this upper-bound. Many classical approximation families, defined with dictionaries or ReLU networks, are shown to be infinite-encodable. This unifies and generalizes several situations where this upper-bound is known.

Citations (3)

Summary

We haven't generated a summary for this paper yet.