Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity for exact polynomial optimization strengthened with Fritz John conditions (2205.11797v4)

Published 24 May 2022 in math.OC and math.AG

Abstract: Let $f,g_1,\dots,g_m$ be polynomials of degree at most $d$ with real coefficients in a vector of variables $x=(x_1,\dots,x_n)$. Assume that $f$ is non-negative on a basic semi-algebraic set $S$ defined by polynomial inequalities $g_j(x)\ge 0$, for $j=1,\dots,m$. Our previous work [arXiv:2205.04254 (2022)] has stated several representations of $f$ based on the Fritz John conditions. This paper provides some explicit degree bounds depending on $n$, $m$, and $d$ for these representations. In application to polynomial optimization, we obtain explicit rates of finite convergence of the hierarchies of semidefinite relaxations based on these representations.

Summary

We haven't generated a summary for this paper yet.