Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ADT-SSL: Adaptive Dual-Threshold for Semi-Supervised Learning (2205.10571v1)

Published 21 May 2022 in cs.CV

Abstract: Semi-Supervised Learning (SSL) has advanced classification tasks by inputting both labeled and unlabeled data to train a model jointly. However, existing SSL methods only consider the unlabeled data whose predictions are beyond a fixed threshold (e.g., 0.95), ignoring the valuable information from those less than 0.95. We argue that these discarded data have a large proportion and are usually of hard samples, thereby benefiting the model training. This paper proposes an Adaptive Dual-Threshold method for Semi-Supervised Learning (ADT-SSL). Except for the fixed threshold, ADT extracts another class-adaptive threshold from the labeled data to take full advantage of the unlabeled data whose predictions are less than 0.95 but more than the extracted one. Accordingly, we engage CE and $L_2$ loss functions to learn from these two types of unlabeled data, respectively. For highly similar unlabeled data, we further design a novel similar loss to make the prediction of the model consistency. Extensive experiments are conducted on benchmark datasets, including CIFAR-10, CIFAR-100, and SVHN. Experimental results show that the proposed ADT-SSL achieves state-of-the-art classification accuracy.

Summary

We haven't generated a summary for this paper yet.