Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding and Mitigating the Uncertainty in Zero-Shot Translation (2205.10068v2)

Published 20 May 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Zero-shot translation is a promising direction for building a comprehensive multilingual neural machine translation~(MNMT) system. However, its quality is still not satisfactory due to off-target issues. In this paper, we aim to understand and alleviate the off-target issues from the perspective of uncertainty in zero-shot translation. By carefully examining the translation output and model confidence, we identify two uncertainties that are responsible for the off-target issues, namely, extrinsic data uncertainty and intrinsic model uncertainty. Based on the observations, we propose two lightweight and complementary approaches to denoise the training data for model training and explicitly penalize the off-target translations by unlikelihood training during model training. Extensive experiments on both balanced and imbalanced datasets show that our approaches significantly improve the performance of zero-shot translation over strong MNMT baselines.

Citations (8)

Summary

We haven't generated a summary for this paper yet.