Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A partial rough path space for rough volatility (2205.09958v2)

Published 20 May 2022 in math.PR

Abstract: We develop a variant of rough path theory tailor-made for analyzing a class of financial asset price models known as rough volatility models. As an application, we prove a pathwise large deviation principle (LDP) for a certain class of rough volatility models, which in turn describes the limiting behavior of implied volatility for short maturity under those models. First, we introduce a partial rough path space and an integration map on it and then investigate several fundamental properties including local Lipschitz continuity of the integration map from the partial rough path space to a rough path space. Second, we construct a rough path lift of a rough volatility model. Finally, we prove an LDP on the partial rough path space, and the LDP for rough volatility then follows by the continuity of the solution map of rough differential equations.

Summary

We haven't generated a summary for this paper yet.