Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HCFormer: Unified Image Segmentation with Hierarchical Clustering (2205.09949v4)

Published 20 May 2022 in cs.CV

Abstract: Hierarchical clustering is an effective and efficient approach widely used for classical image segmentation methods. However, many existing methods using neural networks generate segmentation masks directly from per-pixel features, complicating the architecture design and degrading the interpretability. In this work, we propose a simpler, more interpretable architecture, called HCFormer. HCFormer accomplishes image segmentation by bottom-up hierarchical clustering and allows us to interpret, visualize, and evaluate the intermediate results as hierarchical clustering results. HCFormer can address semantic, instance, and panoptic segmentation with the same architecture because the pixel clustering is a common approach for various image segmentation tasks. In experiments, HCFormer achieves comparable or superior segmentation accuracy compared to baseline methods on semantic segmentation (55.5 mIoU on ADE20K), instance segmentation (47.1 AP on COCO), and panoptic segmentation (55.7 PQ on COCO).

Summary

We haven't generated a summary for this paper yet.