Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On congruence schemes for constant terms and their applications (2205.09902v1)

Published 19 May 2022 in math.NT and math.CO

Abstract: Rowland and Zeilberger devised an approach to algorithmically determine the modulo $pr$ reductions of values of combinatorial sequences representable as constant terms (building on work of Rowland and Yassawi). The resulting $p$-schemes are systems of recurrences and, depending on their shape, are classified as automatic or linear. We revisit this approach, provide some additional details such as bounding the number of states, and suggest a third natural type of scheme that combines benefits of automatic and linear ones. We illustrate the utility of these "scaling" schemes by confirming and extending a conjecture of Rowland and Yassawi on Motzkin numbers.

Summary

We haven't generated a summary for this paper yet.