Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cardinality-Minimal Explanations for Monotonic Neural Networks (2205.09901v3)

Published 19 May 2022 in cs.LG

Abstract: In recent years, there has been increasing interest in explanation methods for neural model predictions that offer precise formal guarantees. These include abductive (respectively, contrastive) methods, which aim to compute minimal subsets of input features that are sufficient for a given prediction to hold (respectively, to change a given prediction). The corresponding decision problems are, however, known to be intractable. In this paper, we investigate whether tractability can be regained by focusing on neural models implementing a monotonic function. Although the relevant decision problems remain intractable, we can show that they become solvable in polynomial time by means of greedy algorithms if we additionally assume that the activation functions are continuous everywhere and differentiable almost everywhere. Our experiments suggest favourable performance of our algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.