Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformer with Memory Replay (2205.09869v1)

Published 19 May 2022 in cs.LG

Abstract: Transformers achieve state-of-the-art performance for natural language processing tasks by pre-training on large-scale text corpora. They are extremely compute-intensive and have very high sample complexity. Memory replay is a mechanism that remembers and reuses past examples by saving to and replaying from a memory buffer. It has been successfully used in reinforcement learning and GANs due to better sample efficiency. In this paper, we propose \emph{Transformer with Memory Replay} (TMR), which integrates memory replay with transformer, making transformer more sample-efficient. Experiments on GLUE and SQuAD benchmark datasets show that Transformer with Memory Replay achieves at least $1\%$ point increase compared to the baseline transformer model when pretrained with the same number of examples. Further, by adopting a careful design that reduces the wall-clock time overhead of memory replay, we also empirically achieve a better runtime efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rui Liu (320 papers)
  2. Barzan Mozafari (14 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.