Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Snake net and balloon force with a neural network for detecting multiple phases (2205.09699v2)

Published 19 May 2022 in cond-mat.stat-mech, cond-mat.dis-nn, cond-mat.quant-gas, and cs.LG

Abstract: Unsupervised machine learning applied to the study of phase transitions is an ongoing and interesting research direction. The active contour model, also called the snake model, was initially proposed for target contour extraction in two-dimensional images. In order to obtain a physical phase diagram, the snake model with an artificial neural network is applied in an unsupervised learning way by the authors of [Phys.Rev.Lett. 120, 176401(2018)]. It guesses the phase boundary as an initial snake and then drives the snake to convergence with forces estimated by the artificial neural network. In this paper, we extend this unsupervised learning method with one contour to a snake net with multiple contours for the purpose of obtaining several phase boundaries in a phase diagram. For the classical Blume-Capel model, the phase diagram containing three and four phases is obtained. Moreover, to overcome the limitations of the initial position and speed up the movement of the snake, the balloon force decaying with the iteration steps is introduced and applied to the snake net structure. Our method is helpful in determining the phase diagram with multiple phases, using just snapshots of configurations from cold atoms or other experiments without knowledge of the phases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. K. K. Darrow, Helium the superfluid, Rev. Mod. Phys. 12, 257 (1940).
  2. R. C. Knechtli and J. Y. Wada, Generation and measurement of highly ionized quiescent plasmas in steady state, Phys. Rev. Lett. 6, 215 (1961).
  3. J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nat. Phys. 13, 431 (2017).
  4. L. Wang, Discovering phase transitions with unsupervised learning, Phys. Rev. B 94, 195105 (2016).
  5. S. J. Wetzel, Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders, Phys. Rev. E 96, 022140 (2017).
  6. K. Ch’ng, N. Vazquez, and E. Khatami, Unsupervised machine learning account of magnetic transitions in the hubbard model, Phys. Rev. E 97, 013306 (2018).
  7. J. F. Rodriguez-Nieva and M. S. Scheurer, Identifying topological order through unsupervised machine learning, Nat. Phys. 15, 790 (2019).
  8. M. S. Scheurer and R.-J. Slager, Unsupervised machine learning and band topology, Phys. Rev. Lett. 124, 226401 (2020).
  9. A. Lidiak and Z. Gong, Unsupervised machine learning of quantum phase transitions using diffusion maps, Phys. Rev. Lett. 125, 225701 (2020).
  10. Y.-H. Liu and E. P. L. van Nieuwenburg, Discriminative cooperative networks for detecting phase transitions, Phys. Rev. Lett. 120, 176401 (2018).
  11. K. Michael, W. Andrew, and T. Demetri, Snakes: Active contour models, Int J Comput Vision 1, 321 (1988).
  12. M. Butenuth and C. Heipke, Network snakes: graph-based object delineation with active contour models, Machine Vision and Applications 23, 91 (2012).
  13. L. D. Cohen, On active contour models and balloons, CVGIP: Image Understanding 53, 211 (1991).
  14. A. I. Guerrero and D. A. Stariolo, The Blume-Capel model in a square lattice with Jx=−Jysubscript𝐽𝑥subscript𝐽𝑦J_{x}=-J_{y}italic_J start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = - italic_J start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT interactions in an external field, Physica A: Statistical Mechanics and its Applications 532, 121839 (2019).
  15. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning (MIT press, 2016).
  16. D. van Oosten, P. van der Straten, and H. T. C. Stoof, Quantum phases in an optical lattice, Phys. Rev. A 63, 053601 (2001).
  17. C. Bong, C. Liew, and H. Lam, Chapter 5 - ground-glass opacity nodules detection and segmentation using the snake model, in Bio-Inspired Computation and Applications in Image Processing, edited by X.-S. Yang and J. P. Papa (Academic Press, 2016) pp. 87–104.
  18. J. Arnold and F. Schäfer, Replacing neural networks by optimal analytical predictors for the detection of phase transitions (2022).
  19. M. D. Leon and P. R. Rodrigues, Generalized classical mechanics and field theory: a geometrical approach of Lagrangian and Hamiltonian formalisms involving higher order derivatives (North-Holland, 1985) pp. xv,289.
  20. R. A. Moore and T. C. Scott, Quantization of second-order lagrangians: Model problem, Phys. Rev. A 44, 1477 (1991).
  21. R. A. Moore, Formal quantization of a chaotic model problem, Canadian Journal of Physics 77, 221 (1999), https://doi.org/10.1139/p99-020 .
  22. T. Scott and D. Andrae, Quantum nonlocality and conservation of momentum, Physics Essays 28, 374 (2015).
  23. M. Abadi, A. Agarwal, and P. B. et al, TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org.
Citations (1)

Summary

We haven't generated a summary for this paper yet.